Corresponding author: B. Blake Levitt, P.O. Box 2014, New Preston, CT06777, USA, E-mail: blakelevitt2@gmail.com, blakelevit@cs.com
References
1. Balmori, A. The effects of microwave radiation on wildlife, preliminary results; 2003. Available from: http://www.emrpolicy.org/litigation/case_law/beebe_hill/balmori_wildlife_study.pdf. Search in Google Scholar
4. Balmori, A. Electromagnetic pollution from phone masts. Effects on wildlife. Pathophysiology 2009;16:191–9. https://doi.org/10.1016/j.pathophys.2009.01.007. Search in Google Scholar
5. Balmori, A. The incidence of electromagnetic pollution on wild mammals: a new “poison” with a slow effect on nature? Environmentalist 2010;30:90–7. https://doi.org/10.1007/s10669-009-9248-y. Search in Google Scholar
6. Balmori, A. Electrosmog and species conservation. Sci Total Environ 2014;496:314–6. 10.1016/j.scitotenv.2014.07.061. Search in Google Scholar
7. Balmori, A. Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Sci Total Environ 2015;518–519:58–60. https://doi.org/10.1016/j.scitotenv.2015.02.077. Search in Google Scholar
8. Balmori, A. Radiotelemetry and wildlife: highlighting a gap in the knowledge on radiofrequency radiation effects. Sci Total Environ 2016;543:662–9. https://doi.org/10.1016/j.scitotenv.2015.11.073. Search in Google Scholar
9. Cucurachi, S, Tamis, WLM, Vijver, MG, Peijnenburg, WLGM, Bolte, JFB, de Snoo, GR. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ Int 2013;51:116–40. https://doi.org/10.1016/j.envint.2012.10.009. Search in Google Scholar
10. Everaert, J. Electromagnetic radiation (EMR) in our environment; 2016. Available from: www.livingplanet.be. Search in Google Scholar
11. Krylov, VV, Izyumov Yu, G, Izekov, EI, Nepomnyashchikh, VA. Magnetic fields and fish behavior. Biol Bull Rev 2014;4:222–31. https://doi.org/10.1134/s2079086414030049. Search in Google Scholar
12. Panagopoulos, DJ, Margaritis, LH. Mobile telephony radiation effects on living organisms. In: Harper, AC, Buress, RV, editors. Mobile telephones. Hauppauge, NY, USA: Nova Science Publishers, Inc.; 2008, Chapter 3:107–49 pp. Search in Google Scholar
13. Sivani, S, Sudarsanam, D. Impacts of radio-frequency electromagnetic field (RF-EMF) from cell phone towers and wireless devices on biosystem and ecosystem – a review. Biol Med 2013;4:202–16. Search in Google Scholar
14. Tricas, T, Gill, A. Effects of EMFs from undersea power cables on elasmobranchs and other marine species. Camarillo, CA: Normandeau Associates, Exponent; U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation, and Enforcement, Pacific OCS Region; 2011 (OCS Study BOEMRE 2011-09). Search in Google Scholar
15. Balmori, A. Possible effects of electromagnetic fields from phone masts on a population of white stork (Ciconia ciconia). Electromagn Biol Med 2005;24:109–19. https://doi.org/10.1080/15368370500205472. Search in Google Scholar
16. Balmori, A, Hallberg, O. The urban decline of the house sparrow (Passer domestics): a possible link with electromagnetic radiation. Electromagn Biol Med 2007;26:141–51. https://doi.org/10.1080/15368370701410558. Search in Google Scholar
17. Engels, S, Schneider, NL, Lefeldt, N, Hein, CM, Zapka, M, Michalik, A, et al.. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 2014;509:353–6. https://doi.org/10.1038/nature13290. Search in Google Scholar
18. Everaert, J, Bauwens, D. A possible effect of electromagnetic radiation from mobile phone base stations on the number of breeding house sparrows (Passer domesticus). Electromagn Biol Med 2007;26:63–72. https://doi.org/10.1080/15368370701205693. Search in Google Scholar
19. Fernie, KJ, Bird, DM. Evidence of oxidative stress in American kestrels exposed to electromagnetic fields. Environ Res 2001;86:198–207. https://doi.org/10.1006/enrs.2001.4263. Search in Google Scholar
20. Fernie, KJ, Reynolds, SJ. The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: a review. J Toxicol Environ Health B Crit Rev 2005;8:127–40. https://doi.org/10.1080/10937400590909022. Search in Google Scholar
21. Fernie, KJ, Bird, DM, Petitclerc, D. Effects of electromagnetic fields on photophasic circulating melatonin levels in American kestrels. Environ Health Perspect 1999;107:901–4. https://doi.org/10.1289/ehp.99107901. Search in Google Scholar
22. Fernie, KJ, Bird, DM, Dawson, RD, Lague, PC. Effects of electromagnetic fields on the reproductive success of American kestrels. Physiol Biochem Zool 2000;73:60–5. https://doi.org/10.1086/316726. Search in Google Scholar
23. Fernie, KJ, Leonard, NJ, Bird, DM. Behavior of free-ranging and captive American kestrels under electromagnetic fields. J Toxicol Environ Health, Part A 2000;59:597–603. Search in Google Scholar
24. Ritz, T, Thalau, P, Phillips, JB, Wiltschko, R, Wiltschko, W. Resonance effects indicate a radical pair mechanism for avian magnetic compass. Nature 2004;429:177–80. https://doi.org/10.1038/nature02534. Search in Google Scholar
25. Ritz, T, Wiltschko, R, Hore, PJ, Rodgers, CT, Stapput, K, Thalau, P, et al.. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys J 2009;96:3451–7. https://doi.org/10.1016/j.bpj.2008.11.072. Search in Google Scholar
26. Tanner, JA. Effect of microwave radiation on birds. Nature 1966;210:636. https://doi.org/10.1038/210636a0. Search in Google Scholar
27. Tanner, JA, Romero-Sierra, C, Davie, SJ. Non-thermal effects of microwave radiation on birds. Nature 1967;216:1139. https://doi.org/10.1038/2161139a0. Search in Google Scholar
28. Wiltschko, R, Wiltschko, W. Sensing magnetic directions in birds: radical pair processes involving cryptochrome. Biosensors 2014;4:221–43. https://doi.org/10.3390/bios4030221. Search in Google Scholar
29. Wiltschko, W, Wiltschko, R. Magnetoreception in birds: two receptors for two different tasks. J Ornithol 2007;148:S61–76. https://doi.org/10.1007/s10336-007-0233-2. Search in Google Scholar
30. Wiltschko, W, Munro, U, Beason, RC, Ford, H, Wiltschko, R. A magnetic pulse leads to a temporary deflection in the orientation of migratory birds. Experientia 1994;50:697–700. https://doi.org/10.1007/bf01952877. Search in Google Scholar
31. Wiltschko, W, Freire, R, Munro, U, Ritz, T, Rogers, L, Thalau, P, et al.. The magnetic compass of domestic chickens, Gallus gallus. J Exp Biol 2007;210:2300–10. https://doi.org/10.1242/jeb.004853. Search in Google Scholar
32. Wiltschko, R, Thalau, P, Gehring, D, Nießner, C, Ritz, T, Wiltschko, W. Magnetoreception in birds: the effect of radio-frequency fields. J R Soc Interface 2015;12:20141103. https://doi.org/10.1098/rsif.2014.1103. Search in Google Scholar
33. Fedrowitz, M. Cows: a big model for EMF research, somewhere between vet-journals and “nature”. Bioelectromagnetics Society. Available from: https://www.bems.org/node/14835. Search in Google Scholar
34. Löscher, W. Survey of effects of radiofrequency electromagnetic fields on production, health and behavior of farm animals. Der Prakt Tierarzt 2003;84:11 (in German). Search in Google Scholar
35. Löscher, W, Käs, G. Behavioral abnormalities in a dairy cow herd near a TV and radio transmitting antenna. Der Prakt Tierarzt 1998;79:437–44 (in German). Search in Google Scholar
36. Nicholls, B, Racey, PA. Bats avoid radar installations: could electromagnetic fields deter bats from colliding with wind turbines? PloS One 2007;2:e297. https://doi.org/10.1371/journal.pone.0000297. Search in Google Scholar
37. Nicholls, B, Racey, PA. The aversive effect of electromagnetic radiation on foraging bats: a possible means of discouraging bats from approaching wind turbines. PloS One 2009;4:e6246. https://doi.org/10.1371/journal.pone.0006246. Search in Google Scholar
38. Rodriguez, M, Petitclerc, D, Burchard, JF, Nguyen, DH, Block, E, Downey, BR. Responses of the estrous cycle in dairy cows exposed to electric and magnetic fields (60 Hz) during 8-h photoperiods. Anim Reprod Sci 2003;15:11–20. https://doi.org/10.1016/s0378-4320(02)00273-7. Search in Google Scholar
39. Balmori, A. Electromagnetic radiation as an emerging driver factor for the decline of insects. Sci Total Environ 2021;767:144913. https://doi.org/10.1016/j.scitotenv.2020.144913. Search in Google Scholar
40. Cammaerts, MC, De Doncker, P, Patris, X, Bellens, F, Rachidi, Z, Cammaerts, D. GSM 900 MHz radiation inhibits ants’ association between food sites and encountered cues. Electromagn Biol Med 2012;31:151–65. https://doi.org/10.3109/15368378.2011.624661. Search in Google Scholar
41. Cammaerts, MC, Rachidi, Z, Bellens, F, De Doncker, P. Food collection and response to pheromones in an ant species exposed to electromagnetic radiation. Electromagn Biol Med 2013;32:315–32. https://doi.org/10.3109/15368378.2012.712877. Search in Google Scholar
42. Cammaerts, MC, Vandenbosch, GAE, Volski, V. Effect of short-term GSM radiation at representative levels in society on a biological model: the ant Myrmica sabuleti. J Insect Behav 2014;27:514–26. https://doi.org/10.1007/s10905-014-9446-4. Search in Google Scholar
43. Greggers, U, Koch, G, Schmidt, V, Dürr, A, Floriou-Servou, A, Piepenbrock, D, et al.. Reception and learning of electric fields in bees. Proc R Soc B Biol Sci 2013;280:20130528. https://doi.org/10.1098/rspb.2013.0528. Search in Google Scholar
44. Guerra, P, Gegear, RJ, Reppert, SM. A magnetic compass aids monarch butterfly migration. Nat Commun 2014;5:4164. https://doi.org/10.1038/ncomms5164. Search in Google Scholar
45. Kirschvink, JL, Padmanabha, S, Boyce, CK, Oglesby, J. Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields. J Exp Biol 1997;200:1363–8. Search in Google Scholar
46. Kumar, NR, Sangwan, S, Badotra, P. Exposure to cell phone radiations produces biochemical changes in worker honey bees. Toxicol Int 2011;18:70–2. https://doi.org/10.4103/0971-6580.75869. Search in Google Scholar
47. Lazaro, A, Chroni, A, Tscheulin, T, Devalez, J, Matsoukas, C, Petanidou, T. Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators. J Insect Conserv 2016;20:315–24. https://doi.org/10.1007/s10841-016-9868-8. Search in Google Scholar
48. Odemer, R, Odemer, F. Effects of radiofrequency electromagnetic radiation (RF-EMF) on honey bee queen development and mating success. Sci Total Environ 2019;661:553–62. https://doi.org/10.1016/j.scitotenv.2019.01.154. Search in Google Scholar
49. Panagopoulos, DJ, Margaritis, LH. Effects of electromagnetic fields on the reproductive capacity of D. melanogaster. In: Stavroulakis, P, editor. Biological effects of electromagnetic fields. New York, NY, USA: Springer International Publishing; 2003:545–78 pp. Search in Google Scholar
50. Panagopoulos, DJ, Karabarbounism, A, Margaritis, LH. Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of Drosophila melanogaster. Electromagn Biol Med 2004;23:29–43. https://doi.org/10.1081/jbc-120039350. Search in Google Scholar
51. Sutton, GP, Clarke, D, Morley, EL, Robert, D. Mechanosensory hairs in bumble bees (Bombus terrestris) detect weak electric fields. Proc Natl Acad Sci USA 2016;113:7261–5. https://doi.org/10.1073/pnas.1601624113. Search in Google Scholar
52. Vácha, M, Puzová, T, Kvícalová, M. Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 2009;212:3473–7. https://doi.org/10.1242/jeb.028670. Search in Google Scholar
53. Vargová, B, Kurimský, J, Cimbala, R, Kosterec, M, Majláth, I, Pipová, N, et al.. Ticks and radio-frequency signals: behavioural response of ticks (Dermacentor reticulatus) in a 900 MHz electromagnetic field. Syst Appl Acarol 2017;22:683–93. https://doi.org/10.11158/saa.22.5.7. Search in Google Scholar
54. Vargová, B, Majláth, I, Kurimský, J, Cimbala, R, Kosterec, M, Tryjanowski, P, et al.. Electromagnetic radiation and behavioural response of ticks: an experimental test. Exp Appl Acarol 2018;75:85–95. https://doi.org/10.1007/s10493-018-0253-z. Search in Google Scholar
55. Cammaerts, MC, Debeir, O, Cammaerts, R. Changes in Paramecium caudatum (Protozoa) near a switched-on GSM telephone. Electromagn Biol Med 2011;30:57–66. https://doi.org/10.3109/15368378.2011.566778. Search in Google Scholar
56. Cellini, L, Grande, R, Di Campli, E, Di Bartolomeo, S, Di Giulio, M, Robuffo, L, et al.. Bacterial response to the exposure of 50 Hz electromagnetic fields. Bioelectromagnetics 2008;29:302–11. https://doi.org/10.1002/bem.20391. Search in Google Scholar
57. Movahedi, MM, Nouri, F, Golpaygani, AT, Ataee, L, Amani, S, Taheri, M. Antibacterial susceptibility pattern of the Pseudomonas aeruginosa and Staphylococcus aureus after exposure to electromagnetic waves emitted from mobile phone simulator. J Biomed Phys Eng 2019;9:637–46. https://doi.org/10.31661/jbpe.v0i0.1107. Search in Google Scholar
58. Potenza, L, Ubaldi, L, De Sanctis, R, De Bellis, R, Cucchiarini, L, Dachà, M. Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat Res 2004;561:53–62. https://doi.org/10.1016/j.mrgentox.2004.03.009. Search in Google Scholar
59. Rodriguez-de la Fuente, AO, Gomez-Flores, R, Heredia-Rojas, JA, Garcia-Munoz, EM, Vargas-Villarreal, J, Hernandez-Garcia, ME, et al.. Trichomonas vaginalis and Giardia lamblia growth alterations by low-frequency electromagnetic fields. Iran J Parasitol 2019;14:652–6. Search in Google Scholar
60. Said-Salman, IH, Jebaii, FA, Yusef, HH, Moustafa, ME. Evaluation of Wi-Fi radiation effects on antibiotic susceptibility, metabolic activity and biofilm formation by Escherichia coli 0157H7, Staphylococcus aureus and Staphylococcus epidermis. J Biomed Phys Eng 2019;9:579–86. https://doi.org/10.1038/s41598-019-51046-7. Search in Google Scholar
61. Salmen, SH, Alharbi, SA, Faden, AA, Wainwright, M. Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria. Saudi J Biol Sci 2018;25:105–10. https://doi.org/10.1016/j.sjbs.2017.07.006. Search in Google Scholar
62. Balmori, A. Mobile phone mast effects on common frog (Rana temporaria) tadpoles: the city turned into a laboratory. Electromagn Biol Med 2010;29:31–5. https://doi.org/10.3109/15368371003685363. Search in Google Scholar
63. Balmori, A. The incidence of electromagnetic pollution on the amphibian decline: is this an important piece of the puzzle? Toxicol Environ Chem 2006;88:287–99. https://doi.org/10.1080/02772240600687200. Search in Google Scholar
64. Komazaki, S, Takano, K. Induction of increase in intracellular calcium concentration of embryonic cells and acceleration of morphogenetic cell movements during amphibian gastrulation by a 50-Hz magnetic field. J Exp Zool 2007;307A:156–62. https://doi.org/10.1002/jez.a.359. Search in Google Scholar
65. Phillips, JB, Deutschlander, ME, Freake, MJ, Borland, SC. The role of extraocular photoreceptors in newt magnetic compass orientation: evidence for parallels between light–dependent magnetoreception and polarized light detection in vertebrates. J Exp Biol 2001;204:2543–52. Search in Google Scholar
66. Phillips, JB, Jorge, PE, Muheim, R. Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms. J R Soc Interface 2010;7(2 Suppl):S241–56. https://doi.org/10.1098/rsif.2009.0459.focus. Search in Google Scholar
67. Shakhparonov, VV, Ogurtsov, SV. Marsh frogs, Pelophylax ridibundus, determine migratory direction by magnetic field. J Comp Physiol A 2017;203:35–43. https://doi.org/10.1007/s00359-016-1132-x. Search in Google Scholar
68. Josberger, E, Hassanzadeh, P, Deng, PY, Sohn, J, Rego, M, Amemiya, C, et al.. Proton conductivity in ampullae of Lorenzini jelly. Sci Adv 2016;2:e1600112. https://doi.org/10.1126/sciadv.1600112. Search in Google Scholar
69. Landler, L, Painter, MS, Youmans, PW, Hopkins, WA, Phillips, JB. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings. PloS One 2015;10:e0124728. https://doi.org/10.1371/journal.pone.0124728. Search in Google Scholar
70. Lohmann, KJ, Lohmann, CMF. Detection of magnetic field intensity by sea turtles. Nature 1966;380:59–61. Search in Google Scholar
71. Lohmann, KJ, Lohmann, CMF. Orientation and open-sea navigation in sea turtles. J Exp Biol 1996;199:73–81. Search in Google Scholar
72. Lohmann, KJ, Lohmann, CMF. Migratory guidance mechanisms in marine turtles. J Avian Biol 1998;29:585–96. https://doi.org/10.2307/3677179. Search in Google Scholar
73. Lohmann, KJ, Witherington, BE, Lohmann, CMF, Salmon, M. Orientation, navigation, and natal beach homing in sea turtles. In: Lutz, P, Musick, J, editors. The biology of sea turtles. Boca Raton: CRC Press; 1997:107–35 pp. Search in Google Scholar
74. Luschi, P, Benhamou, S, Girard, C, Ciccione, S, Roos, D, Sudre, J, et al.. Marine turtles use geomagnetic cues during open-sea homing. Curr Biol 2007;17:126–33. https://doi.org/10.1016/j.cub.2006.11.062. Search in Google Scholar
75. Merrill, MW, Salmon, M. Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta) from the Gulf of Mexico. Mar Biol 2010;158:101–12. https://doi.org/10.1007/s00227-010-1545-y. Search in Google Scholar
76. Naisbett-Jones, LC, Putman, NF, Stephenson, JF, Ladak, S, Young, KA. A magnetic map leads juvenile European eels to the Gulf Stream. Curr Biol 2017;27:1236–40. https://doi.org/10.1016/j.cub.2017.03.015. Search in Google Scholar
77. Naisbett-Jones, LC, Putman, NF, Scanlan, MM, Noakes, DL, Lohmann, KJ. Magnetoreception in fishes: the effect of magnetic pulses on orientation of juvenile Pacific salmon. J Exp Biol 2020;223:jeb222091. https://doi.org/10.1242/jeb.222091. Search in Google Scholar
78. Putman, NF, Jenkins, ES, Michielsens, CG, Noakes, DL. Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon. J R Soc Interface 2014;11:20140542. https://doi.org/10.1098/rsif.2014.0542. Search in Google Scholar
79. Putman, NF, Meinke, AM, Noakes, DL. Rearing in a distorted magnetic field disrupts the ‘map sense’ of juvenile steelhead trout. Biol Lett 2014;10:20140169. https://doi.org/10.1098/rsbl.2014.0169. Search in Google Scholar
80. Putman, NF, Scanlan, MM, Billman, EJ, O’Neil, JP, Couture, RB, Quinn, TP, et al.. Inherited magnetic map guides ocean navigation in juvenile Pacific salmon. Curr Biol 2014;24:446–50. https://doi.org/10.1016/j.cub.2014.01.017. Search in Google Scholar
81. Putman, NF, Williams, CR, Gallagher, EP, Dittman, AH. A sense of place: pink salmon use a magnetic map for orientation. J Exp Biol 2020;223:jeb218735. https://doi.org/10.1242/jeb.218735. Search in Google Scholar
82. Quinn, TP, Merrill, RT, Brannon, EL. Magnetic field detection in Sockeye salmon. J Exp Zool 2005;217:137–42. Search in Google Scholar
83. Belyavskaya, NA. Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields. Adv Space Res 2001;28:645–50. https://doi.org/10.1016/s0273-1177(01)00373-8. Search in Google Scholar
84. Vian, A, Roux, D, Girard, S, Bonnet, P, Paladian, F, Davies, E, et al.. Microwave irradiation affects gene expression in plants. Plant Signal Behav 2006;1:67–70. https://doi.org/10.4161/psb.1.2.2434. Search in Google Scholar
85. Vian, A, Davies, E, Gendraud, M, Bonnet, P. Plant responses to high frequency electromagnetic fields. BioMed Res Int 2016;2016:1830262. https://doi.org/10.1155/2016/1830262. Search in Google Scholar
86. NRDC. The promise of the smart grid: goals, policies, and measurement must support sustainability benefits. Issue brief, ralph cavanagh; 2012. Available from: https://www.nrdc.org/resources/promise-smart-grid-goals-policies-and-measurement-must-support-sustainability-benefits. Search in Google Scholar
87. Sierra Club. Energy committee educates the public with smart grid forum, by rick nunno and amy weinfurter; 2013. Available from: https://www.sierraclub.org/dc/blog/2013/10/energy-committee-educates-public-smart-grid-forum. Search in Google Scholar
88. Connecticut Department of Energy and Environmental Protection. Comprehensive energy strategy, CT general statutes section 16a-3d, Connecticut department of energy and environmental protection, draft; 2017. Available from: http://www.ct.gov/deep/lib/deep/energy/ces/2017_draft_comprehensiveenergystrategy.pdf. Search in Google Scholar
89. Wheeler, T. Prepared remarks of FCC Chairman Tom Wheeler, the future of wireless: a vision for U.S. leadership in a 5G world. Washington, D.C.: National Press Club; 2016:3 p. Search in Google Scholar
90. Michaelson, SM, Lin, JC. Biological effects and health implications of radiofrequency radiation. New York and London: Plenum Press; 1987:272–7 pp. Search in Google Scholar
91. Yong, E. Robins can literally see magnetic fields, but only if their visions is sharp. DiscoverMagazine.com. Available from: http://blogs.discovermagazine.com/notrocketscience/2010/07/08/robins-can-literally-see-magnetic-fields-but-only-if-their-vision-is-sharp/#.WlU2d3lG3Z4. Search in Google Scholar
92. Council of Europe, Parliamentary Assembly, Resolution 1815. Final version: the potential dangers of electromagnetic fields and their effect on the environment. Origin – text adopted by the standing committee, acting on behalf of the assembly, on 27 May 2011 (see doc. 12608, report of the committee on the environment, agriculture and local and regional affairs, rapporteur: Mr Huss); 2011. Available from: http://assembly.coe.int/nw/xml/XRef/Xref-XML2HTML-en.asp?fileid=17994&. Search in Google Scholar
93. Health Council of the Netherlands. Report 2020. 5G and health to: the President of the house of representatives of the Netherlands. The Hague; 2020, No. 2020/16e. Search in Google Scholar
94. Manville, AMII. Recommendations for additional research and funding to assess impacts of nonionizing radiation to birds and other wildlife. Memorandum to Dr. J. McGlade, science advisor to United Nations Environment Program, key research needs affecting wildlife suggesting UNEP’s immediate attention; 2015:2 p. Search in Google Scholar
95. Manville, AMII. Impacts to birds and bats due to collisions and electrocutions from some tall structures in the United States — wires, towers, turbines, and solar arrays: state of the art in addressing the problems. In: Angelici, FM, editor. Problematic wildlife: a cross-disciplinary approach. New York, NY, USA: Springer International Publishing; 2016, Chap. 20:415–42 pp. Search in Google Scholar
96. Manville, AMII. A briefing memo: what we know, can infer, and don’t yet know about impacts from thermal and non-thermal non-ionizing radiation to birds and other wildlife — for public release. Peer-reviewed briefing memo; 2016:12 p. Search in Google Scholar
97. Manville, AMII. Recommendations for additional research and funding to assess impacts of nonionizing radiation to birds and other wildlife. Memorandum to Dr. J. McGlade, science advisor to United Nations Environment Program, key research needs affecting wildlife suggesting UNEP’s immediate attention; 2015:2 p. Search in Google Scholar
98. Manville, AMII. Protocol for monitoring the impacts of cellular communication towers on migratory birds within the Coconino, Prescott, and Kaibab National Forests, Arizona. Peer-reviewed research monitoring protocol requested by and prepared for the U.S. Forest Service. Division of Migratory Bird Management, USFWS; 2002:9 p. Search in Google Scholar
99. Manville, AMII. Anthropogenic-related bird mortality focusing on steps to address human-caused problems. In: Invited white paper for the anthropogenic panel, 5th international partners in flight conference, August 27, 2013. Division of Migratory Bird Management, USFWS, Snowbird, Utah; 2013:16 p. peer-reviewed white paper. Search in Google Scholar
100. Levitt, BB, Lai, H. Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ Rev 2010;18:369–95. https://doi.org/10.1139/a10-018. Search in Google Scholar
101. Sage, C, Carpenter, DO, editors. BioInitiative report: a rationale for a biologically-based public exposure standard for electromagnetic fields (ELF and RF). Report updated: 2014–2020; 2012. Available from: www.bioinitiative.org. Search in Google Scholar
102. Mckinley, GM, Charles, DR. Certain biological effects of high frequency fields. Science 1930;71:490. https://doi.org/10.1126/science.71.1845.490. Search in Google Scholar
103. Ark, PA, Parry, W. Application of high-frequency electrostatic fields in agriculture. Q Rev Biol 1940;16:172. https://doi.org/10.1086/394605. Search in Google Scholar
104. McRee, DI. A technical review of the biological effects of non-ionizing radiation. Washington, DC: Office of Science and Technology Policy; 1978. Search in Google Scholar
105. Massey, K. The challenge of nonionizing radiation: a proposal for legislation. Duke Law J 1979:105. https://doi.org/10.2307/1372226. Search in Google Scholar
106. BENER. Nonionizing electromagnetic radiation (D-300 GHz). Report prepared for the National Telecommunications and Information Administration by the Interagency Task Force on biological effects of nonionizing electromagnetic radiation; 1979. Search in Google Scholar
107. Havas, M. From zory glaser’s archive; 2010. Available from: http://www.magdahavas.com/introduction-to-from-zorys-archive/. Search in Google Scholar
108. Foster, KR, Morrissey, JJ. Thermal aspects of exposure to radiofrequency energy: report of a workshop. Int J Hyperther 2011;27:307–9. https://doi.org/10.3109/02656736.2010.545965. Search in Google Scholar
109. Foster, KR, Kritikos, HN, Schwan, HP. Effect of surface cooling and blood flow on the microwave heating of tissue. IEEE Trans Biomed Eng 1978;25:313–6. https://doi.org/10.1109/tbme.1978.326313. Search in Google Scholar
110. Foster, KR, Ziskin, MC, Balzano, QR. Thermal response of human skin to microwave energy: a critical review. Health Phys 2016;111:528–41. https://doi.org/10.1097/hp.0000000000000571. Search in Google Scholar
111. Foster, KR, Ziskin, MC, Balzano, QR. Thermal modeling for the next generation of radiofrequency exposures limits: commentary. Health Phys 2017;113:41–53. https://doi.org/10.1097/hp.0000000000000671. Search in Google Scholar
112. Foster, KR, Ziskin, MC, Balzano, Q, Bit-Babik, G. Modeling tissue heating from exposure to radiofrequency energy and relevance of tissue heating to exposure limits: heating factor. Health Phys 2018:115295–307. Search in Google Scholar
113. Justesen, DR, Ragan, HA, Rogers, LE, Guy, WA, Hjeresen, DL, Hinds, WT, et al.. Compilation and assessment of microwave bioeffects: A selective review of the literature on biological effects of microwaves in relation to the satellite power system, no PNL-2634 (Revision). Washington, DC: Department of Energy; 1978. Search in Google Scholar
114. Glasser, ZR, Cleveland, RF, Keilman, JK. Bioeffects, chapter 3, NIOSH draft criteria document on radio-frequency and microwave radiation. Washington, DC [Director’s Draft]: National Institute for Occupational Safety and Health; 1979:29–330 pp. Search in Google Scholar
115. American National Standards Institute, ANSI C95.1. American national standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz. ANSI C95.1 – 1982; 1982. Available from: https://ehtrust.org/wp-content/uploads/2015/11/ANSI-National-standards-1982-safety-levels-for-human-exposure.pdf. Search in Google Scholar
116. Federal Communications Commission. Evaluating compliance with FCC-specified guidelines for human exposure to radiofrequency radiation, 97–101th ed. Washington, DC: U.S. Federal Communications Commission. Office of Engineering and Technology, OET Bulletin 65; 1997. Available from: https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet65/oet65.pdf. Search in Google Scholar
117. U.S. Federal Communications Commission. Human exposure to radiofrequency electromagnetic fields and reassessment of FCC radiofrequency exposure limits and policies. A rule by the federal communications commission on 04/01/2020 published in: the federal register; 2020. Available from: https://www.federalregister.gov/documents/2020/04/01/2020-02745/human-exposure-to-radiofrequency-electromagnetic-fields-and-reassessment-of-fcc-radiofrequency. Search in Google Scholar
118. U.S. Federal Communications Commission. (Federal register, human exposure to radiofrequency electromagnetic fields; correction, A proposed rule by the federal communications commission on 05/04/2020; 2020. Available from: https://www.federalregister.gov/documents/2020/05/04/2020-08738/human-exposure-to-radiofrequency-electromagnetic-fields-correction. Search in Google Scholar
119. ICNIRP. Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Germany: International Council on Non-Ionizing Radiation (ICNIRP). Oberschleisseim; 1998. Search in Google Scholar
120. ICNIRP. International commissions on non-ionizing radiation protection, 2020 ICNIRP guidelines for limiting exposure to electromagnetic fields (100 KHZ TO 300GHZ), published ahead of print in health physics; 2020. Available from: https://www.icnirp.org/cms/upload/publications/ICNIRPrfgdl2020.pdf. Search in Google Scholar
121. Magras, IN, Xenos, TD. RF-induced changes in the prenatal development of mice. Bioelectromagnetics 1997;18:455–61. https://doi.org/10.1002/(sici)1521-186x(1997)18:6<455::aid-bem8>3.0.co;2-1. Search in Google Scholar
122. Schwarze, S, Schneibder, NL, Reichl, T, Dreyer, D, Lefeldt, N, Engels, S, et al.. Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night-migratory songbird (Erithacus rubecula) than strong narrow-band fields. Front Behav Neurosci 2016;10:55. https://doi.org/10.3389/fnbeh.2016.00055. Search in Google Scholar
123. Zosangzuali, M, Lalremruati, M, Lalmuansangi, C, Nghakliana, F, Pachuau, L, Bandara, P, et al.. Effects of radiofrequency electromagnetic radiation emitted from a mobile phone base station on the redox homeostasis in different organs of Swiss albino mice. Electromagn Biol Med 2021 Mar 9. https://doi.org/10.1080/15368378.2021.1895207 [Epub ahead of print]. Search in Google Scholar
124. Adey, WR. Tissue interactions with nonionizing electromagnetic fields. Physiol Rev 1981;61:435–514. https://doi.org/10.1152/physrev.1981.61.2.435. Search in Google Scholar
125. Adey, WR. Ionic nonequilibrium phenomena in tissue interactions with electromagnetic fields. In: Illinger, KH, editor. Biological effects of nonionizing radiation. Washington, D.C.: American Chemical Soc.; 1981:271–97 pp. Search in Google Scholar
126. Adey, WR. Nonlinear, nonequilibrium aspects of electromagnetic field interactions at cell membranes. In: Adey, WR, Lawrence, AF, editors. Nonlinear electrodynamics in biological systems. New York: Plenum Press; 1984:3–22 pp. Search in Google Scholar
127. Adey, WR. Biological effects of electromagnetic fields. J Cell Biochem 1993;51:410–6. https://doi.org/10.1002/jcb.2400510405. Search in Google Scholar
128. Gandhi, OP. The ANSI radio frequency safety standard: its rationale and some problems. IEEE Eng Med Biol Mag 1987;6:22–5. https://doi.org/10.1109/memb.1987.5006370. Search in Google Scholar
129. Frey, AH, editor. On the nature of electromagnetic field interactions with biological systems. Austin, TX: R.G. Landes Company; 1994:5–6 pp. Search in Google Scholar
130. Adair, RK. Environmental objections to the PAVE PAWS radar system: a scientific review. Radiat Res 2003;159:128–34. https://doi.org/10.1667/0033-7587(2003)159[0128:eottpp]2.0.co;2. Search in Google Scholar
131. Adair, RK. Biophysical limits on athermal effects of RF and microwave radiation. Bioelectromagnetics 2003;24:39–48. https://doi.org/10.1002/bem.10061. Search in Google Scholar
132. Bruno, WJ. What does photon energy tell us about cellphone safety? 2011. arXiv preprint arXiv:1104.5008. Available from: https://arxiv.org/abs/1104.5008 [updated 2017]. Search in Google Scholar
133. Becker, RO. Cross currents, the perils of electropollution, the promise of electromedicine. Los Angeles: Jeremy Tarcher; 1990:67–81 pp. Search in Google Scholar
134. DiCarlo, A, White, N, Guo, F, Garrett, P, Litovitz, T. Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection. J Cell Biochem 2002;84:447–54. https://doi.org/10.1002/jcb.10036. Search in Google Scholar
135. Blank, M. Overpowered, what science tells us about the dangers of cell phones and other Wi-Fi-age devices. New York: Seven Stories Press; 2014:28–9 pp. Search in Google Scholar
136. Marino, A. Assessing health risks of cell towers. In: Levitt, BB, editor. Cell towers, wireless convenience? Or environmental hazard? Safe Goods/New Century, 2001. Bloomingtoin, IN: iUniverse, Inc; 2011:87–103 pp. Search in Google Scholar
137. Lorenz, EN. Deterministic nonperiodic flow. J Atmos Sci 1963;20:130–41. https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2. Search in Google Scholar
138. Lorenz, EN. The predictability of hydrodynamic flow. Trans NY Acad Sci 1963;25:409–32. https://doi.org/10.1111/j.2164-0947.1963.tb01464.x. Search in Google Scholar
139. Lorenz, EN. Predictability. In: AAAS 139th meeting; 1972. Search in Google Scholar
140. Peleg, M. Biological phenomena are affected by aggregates of many radiofrequency photons. In: International conference on environmental indicators (ISEI), 11–14 Sept. 2011 in Haifa; 2011. Search in Google Scholar
141. Kostoff, RN, Lau, CGY. Modified health effects of non-ionizing electromagnetic radiation combined with other agents reported in the biomedical literature. Chapter 4. In: Geddes, CD, editor. Microwave effects on DNA and proteins. New York, NY, USA: Springer International Publishing; 2017. Search in Google Scholar
142. Peleg, M. Thermodynamic perspective on the interaction of radio frequency radiation with living tissue. Int J Biophys 2012;2:1–6. https://doi.org/10.5923/j.biophysics.20120201.01. Search in Google Scholar
143. Panagopoulos, DJ. Considering photons as spatially confined wave-packets. In: Reimer, A, editor. Horizons in world physics. New York, NY, USA: Nova Science Publishers; 2015, vol 285. Search in Google Scholar
144. Panagopoulos, DJ. Man-made electromagnetic radiation is not quantized. In: Reimer, A, editor. Horizons in world physics. New York, NY, USA: Nova Science Publishers, Inc.; 2018:296 p. Search in Google Scholar
145. Panagopoulos, D, Karabarbounis, A. Comment on “Behavior of charged particles in a biological cell exposed to AC–DC electromagnetic fields” and on “Comparison between two models for interactions between electric and magnetic fields and proteins in cell membranes”. Environ Eng Sci 2011;28:749–51. https://doi.org/10.1089/ees.2011.2810.com. Search in Google Scholar
146. Panagopoulos, DJ, Margaritis, LH. Theoretical considerations for the biological effects of electromagnetic fields. In: Stavroulakis, P, editor. Biological effects of electromagnetic fields. New York, NY, USA: Springer Publisher; 2003:5–33 pp. Search in Google Scholar
147. Tell, RA, Kavet, R. A survey of the urban radiofrequency (RF) environment. Radiat Protect Dosim 2014;162:499–507. https://doi.org/10.1093/rpd/ncu021. Search in Google Scholar
148. Sagar, S, Dongus, S, Schoeni, A, Roser, K, Eeftens, M, Struchen, B, et al.. Radiofrequency electromagnetic field exposure in everyday microenvironments in Europe: a systematic literature review. J Expo Sci Environ Epidemiol 2017;28:147–60. https://doi.org/10.1038/jes.2017.13. Search in Google Scholar
149. Sagar, S, Adem, SM, Struchen, B, Loughran, SP, Brunjes, ME, Arangua, L, et al.. Comparison of radiofrequency electromagnetic field exposure levels in different everyday microenvironments in an international context. Environ Int 2018;114:297–306. https://doi.org/10.1016/j.envint.2018.02.036. Search in Google Scholar
150. Gonzalez-Rubio, J, Najera, A, Arribas, E. Comprehensive personal RFEMF exposure map and its potential use in epidemiological studies. Environ Res 2016;149:105112. https://doi.org/10.1016/j.envres.2016.05.010. Search in Google Scholar
151. Tell, RA, Mantiply, ED. Population exposure to VHF and UHF broadcast radiation in the United States. Proc IEEE 1980;68:6–12. https://doi.org/10.1109/proc.1980.11573. Search in Google Scholar
152. Moskowitz, J. New study shows that cell phone towers are largest contributor to environmental radiofrequency radiation exposure; 2018. Available from: https://www.saferemr.com/2018/03/cell-phone-towers-are-largest.html. Search in Google Scholar
153. Estenberg, J, Augustsson, T. Extensive frequency selective measurements of radiofrequency fields in outdoor environments performed with a novel mobile monitoring system. Bioelectromagnetics 2014;35:227–30. https://doi.org/10.1002/bem.21830. Search in Google Scholar
154. Hardell, L, Koppel, T, Carlberg, M, Ahonen, M, Hedendahl, L. Radiofrequency radiation at Stockholm Central Railway Station in Sweden and some medical aspects on public exposure to RF fields. Int J Oncol 2016;49:1315–24. https://doi.org/10.3892/ijo.2016.3657. Search in Google Scholar
155. Hardell, L, Carlberg, M, Koppel, T, Hedendahl, L. High radiofrequency radiation at Stockholm old town: an exposimeter study including the royal Castle, Supreme Court, three major squares and the Swedish parliament. Mol Clin Oncol 2017;6:462–76. https://doi.org/10.3892/mco.2017.1180. Search in Google Scholar
156. Bolte, JF, Eikelboom, T. Personal radiofrequency electromagnetic field measurements in The Netherlands: exposure level and variability for everyday activities, times of day and types of area. Environ Int 2012;48:133–42. https://doi.org/10.1016/j.envint.2012.07.006. Search in Google Scholar
157. Frei, P, Mohler, E, Neubauer, G, Theis, G, Bürgi, A, Fröhlich, J, et al.. Temporal and spatial variability of personal exposure to radio frequency electromagnetic fields. Environ Res 2009;109:779–85. https://doi.org/10.1016/j.envres.2009.04.015. Search in Google Scholar
158. Joseph, W, Frei, P, Roösli, M, Thuróczy, G, Gajsek, P, Trcek, T, et al.. Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe. Environ Res 2010;110:658–63. https://doi.org/10.1016/j.envres.2010.06.009. Search in Google Scholar
159. Markakis, I, Samaras, T. Radiofrequency exposure in Greek indoor environments. Health Phys 2013;104:293–301. https://doi.org/10.1097/hp.0b013e31827ca667. Search in Google Scholar
160. Rowley, JT, Joyner, KH. Comparative international analysis of radiofrequency exposure surveys of mobile communication radio base stations. J Expo Sci Environ Epidemiol 2012;22:304–15. https://doi.org/10.1038/jes.2012.13. Search in Google Scholar
161. Rowley, JT, Joyner, KH. Observations from national Italian fixed radiofrequency monitoring network. Bioelectromagnetics 2016;37:136–9. https://doi.org/10.1002/bem.21958. Search in Google Scholar
162. Urbinello, D, Huss, A, Beekhuizen, J, Vermeulen, R, Röösli, M. Use of portable exposure meters for comparing mobile phone base station radiation in different types of areas in the cities of Basel and Amsterdam. Sci Total Environ 2014;468–469:1028–33. https://doi.org/10.1016/j.scitotenv.2013.09.012. Search in Google Scholar
163. Viel, JF, Cardis, E, Moissonnier, M, de Seze, R, Hours, M. Radiofrequency exposure in the French general population: band, time, location and activity variability. Environ Int 2009;35:1150–4. https://doi.org/10.1016/j.envint.2009.07.007. Search in Google Scholar
164. Viel, JF, Clerc, S, Barrera, C, Rymzhanova, R, Moissonnier, M, Hours, M, et al.. Residential exposure to radiofrequency fields from mobile phone base stations, and broadcast transmitters: a population-based survey with personal meter. Occup Environ Med 2009;66:550–6. https://doi.org/10.1136/oem.2008.044180. Search in Google Scholar
165. Viel, JF, Tiv, M, Moissonnier, M, Cardis, E, Hours, M. Variability of radiofrequency exposure across days of the week: a population-based study. Environ Res 2011;111:510–3. https://doi.org/10.1016/j.envres.2011.02.015. Search in Google Scholar
166. Kasevich, RS. Brief overview of the effects of electromagnetic fields on the environment. In: Levitt, BB, editor. Cell towers, wireless convenience or environmental hazards? Proceedings of the “cell towers forum” state of the science/state of the law. Bloomington, IN: iUniverse, Inc.; 2011:170–5 pp. Search in Google Scholar
167. Anglesio, L, Benedetto, A, Bonino, A, Colla, D, Martire, F, Fusette, S, et al.. Population exposure to electro-magnetic fields generated by radio base stations: evaluation of the urban background by using provisional model and instrumental measurements. Radiat Protect Dosim 2001;97:355–8. https://doi.org/10.1093/oxfordjournals.rpd.a006688. Search in Google Scholar
168. Hardell, L, Carlberg, M, Hedendahl, LK. Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: a case report. Oncol Lett 2018;15:7871–83. https://doi.org/10.3892/ol.2018.8285. Search in Google Scholar
169. Rinebold, JM. State centralized siting of telecommunications facilities and cooperative efforts with Connecticut towns. In: Levitt, BB, editor. Cell towers, wireless convenience? Or environmental hazard? Proceedings of the cell towers forum, state of the science/state of the law. Bloomington, IN: iUniverse, Inc.; 2001:129–41 pp. Search in Google Scholar
170. Santini, R, Santini, P, Danze, JM, Le Ruz, P, Seigne, M. Enquête sur la sante´ de riverains de stations relais de te´le´- phonie mobile: incidences de la distance et du sexe. Pathol Biol 2002;50:369–73. https://doi.org/10.1016/s0369-8114(02)00311-5. Search in Google Scholar
171. Manville, AMII. Human impact on the black bear in Michigan’s Lower Peninsula. Int Conf Bear Res Manag 1983;5:20–33. https://doi.org/10.2307/3872516. Search in Google Scholar
172. Lohmann, KJ. Sea turtles: navigating with magnetism. Curr Biol 2007;17:R102–4. https://doi.org/10.1016/j.cub.2007.01.023. Search in Google Scholar
173. Barron, DG, Brawn, JD, Weatherhead, PJ. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol Evol 2010;1:180–7. https://doi.org/10.1111/j.2041-210X.2010.00013.x. Search in Google Scholar
174. Albrecht, K. Microchip-induced tumors in laboratory rodents and dogs: a review of the literature 1990–2006. IEEE Int Symp Technol Soc 2010;2010:337–49. https://doi.org/10.1109/ISTAS.2010.5514622. Search in Google Scholar
175. Blanchard, KT, Barthel, C, French, JE, Holden, HE, Moretz, R, Pack, FD, et al.. Transponder-induced sarcoma in the heterozygous p53+/− mouse. Toxicol Pathol 1999;27:519–27. https://doi.org/10.1177/019262339902700505. Search in Google Scholar
176. Elcock, LE, Stuart, BP, Wahle, BS, Hoss, HE. Tumors in long-term rat studies associated with microchip animal identification devices. Exp Toxicol Pathol 2001;52:483–91. https://doi.org/10.1016/s0940-2993(01)80002-6. Search in Google Scholar
177. Johnson, K. Foreign-body tumorigenesis: sarcomas induced in mice by subcutaneously implanted transponders. Toxicol Pathol 1996;33:619. Search in Google Scholar
178. Le Calvez, S, Perron-Lepage, M-F, Burnett, R. Subcutaneous microchip-associated tumours in B6C3F1 mice: a retrospective study to attempt to determine their histogenesis. Exp Toxicol Pathol 2006;57:255–65. https://doi.org/10.1016/j.etp.2005.10.007. Search in Google Scholar
179. Palmer, TE, Nold, J, Palazzolo, M, Ryan, T. Fibrosarcomas associated with passive integrated transponder implants. In: 16th international symposium of the society of toxicologic pathology. Toxicol Pathol 1998;26:165–76. Search in Google Scholar
180. Tillmann, T, Kamino, K, Dasenbrock, C, Ernst, H, Kohler, M, Moraweitz, G, et al.. Subcutaneous soft tissue tumours at the site of implanted microchips in mice. Exp Toxicol Pathol 1997;49:197–200. https://doi.org/10.1016/s0940-2993(97)80007-3. Search in Google Scholar
181. Vascellari, M, Mutinelli, F, Cossettini, R, Altinier, E. Liposarcoma at the site of an implanted microchip in a dog. Vet J 2004;168:188–90. https://doi.org/10.1016/s1090-0233(03)00121-7. Search in Google Scholar
182. Vascellari, M, Mutinelli, F. Fibrosarcoma with typical features of postinjection sarcoma at site of microchip implant in a dog: histologic and immunohistochemical study. Vet Pathol 2006;43:545–8. https://doi.org/10.1354/vp.43-4-545. Search in Google Scholar
183. Paik, MJ, Kim, HS, Lee, YS, Choi, HD, Pack, JK, Kim, N, et al.. Metabolomic study of urinary polyamines in rat exposed to 915 MHz radiofrequency identification signal. Amino Acids 2016;48:213–7. https://doi.org/10.1007/s00726-015-2079-x. Search in Google Scholar
184. Ball, DJ, Argentieri, G, Krause, R, Lipinski, M, Robison, RL, Stoll, RE, et al.. Evaluation of a microchip implant system used for animal identification in rats. Lab Anim Sci 1991;41:185–6. Search in Google Scholar
185. Darney, K, Giraudin, A, Joseph, R, Abadie, P, Aupinel, P, Decourtye, A, et al.. Effect of high-frequency radiations on survival of the honeybee (Apis mellifera L.). Apidologie 2015;47:703–10. https://doi.org/10.1007/s13592-015-0421-7. Search in Google Scholar
186. Murasugi, E, Koie, H, Okano, M, Watanabe, T, Asano, R. Histological reactions to microchip implants in dogs. Vet Rec 2003;153:328–30. https://doi.org/10.1136/vr.153.11.328. Search in Google Scholar
187. Rao, GN, Edmondson, J. Tissue reaction to an implantable identification device in mice. Toxicol Pathol 1990;18:412–6. https://doi.org/10.1177/019262339001800308. Search in Google Scholar
188. Raybuck, DW, Larkin, JL, Stoleson, SH, Boves, TJ. Mixed effects of geolocators on reproduction and survival of Cerulean Warblers, a canopy-dwelling, long-distance migrant. Condor 2017;119:289–97. https://doi.org/10.1650/condor-16-180.1. Search in Google Scholar
189. Calvente, I, Fernández, MF, Pérez-Lobato, R, Dávila-Arias, C, Ocón, O, Ramos, R, et al.. Outdoor characterization of radiofrequency electromagnetic fields in a Spanish birth cohort. Environ Res 2015;138:136–43. https://doi.org/10.1016/j.envres.2014.12.013. Search in Google Scholar
190. Lahham, A, Ayyad, H. Personal exposure to radiofrequency electromagnetic fields among palestinian adults. Health Phys 2019;117:396–402. https://doi.org/10.1097/hp.0000000000001077. Search in Google Scholar
191. Hamnerius, Y, Uddmar, T. Microwave exposure from mobile phones and base stations in Sweden. In: Proceedings of the international conference on cell tower sitting; 2000:52–63 pp. Search in Google Scholar
192. Gryz, K, Karpowicz, J. Radiofrequency electromagnetic radiation exposure inside the metro tube infrastructure in Warszawa. Electromagn Biol Med 2015;34:265–73. https://doi.org/10.3109/15368378.2015.1076447. Search in Google Scholar
193. Joyner, KH, Van Wyk, MJ, Rowley, JT. National surveys of radiofrequency field strengths from radio base stations in Africa. Radiat Protect Dosim 2014;158:251–62. https://doi.org/10.1093/rpd/nct222. Search in Google Scholar
194. Sagar, S, Struchen, B, Finta, V, Eeftens, M, Röösli, M. Use of portable exposimeters to monitor radiofrequency electromagnetic field exposure in the everyday environment. Environ Res 2016;150:289–98. https://doi.org/10.1016/j.envres.2016.06.020. Search in Google Scholar
195. Stribbe, M. Google blimps to bring wireless internet to Africa. Forbes 2013;15:757. Search in Google Scholar
196. CBS News, Associated Press. U.S. tests spy blimps on Mexico border, August 22, 2012, 9:17 pm; 2012. Available from: http://www.cbsnews.com/news/us-tests-spy-blimps-on-mexico-border/. Search in Google Scholar
197. NASA. National Aeronautics and Space Administration. Socioeconomic Data and Applications Center (SEDAC). The Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic), v2 (1995 – 2004); 2018. Available from: https://cmr.earthdata.nasa.gov/search/concepts/C179001808-SEDAC.html. Search in Google Scholar
198. Center for Earth Science Information Network (CIESN). The last of the wild project, version 2, 2005 (LWP-2): global human footprint dataset (Geographic), v2 (1995 – 2004); 2018. https://doi.org/10.7927/H4M61H5F. Search in Google Scholar
199. Macedo, L, Salvador, CH, Moschen, N, Monjeau, A. Atlantic forest mammals cannot find cellphone coverage. Biol Conserv 2018;220:201–8. https://doi.org/10.1016/j.biocon.2018.02.018. Search in Google Scholar
200. Platt, JR. No cell-phone reception? That’s good news for Jaguars, a new study finds that the big cats and other endangered animals do best in places where there’s no phone coverage. The Revelator; 2018. Available from: http://therevelator.org/phones-vs-jaguars/. Search in Google Scholar
201. PEER. Public employees for environmental responsibility. Yellowstone backcountry blanketed with cell coverage, remotest corners now connected despite park promises of limited coverage; 2016. Available from: https://www.peer.org/news/news-releases/yellowstone-backcountry-blanketed-with-cell-coverage.html. Search in Google Scholar
202. PEER. Public employees for environmental responsibility. Mount rainier wilderness slated for cell coverage, proposed cellular antennas in Paradise Visitor Center will wire wilderness; 2016. Available from: http://www.peer.org/news/news-releases/mount-rainier-wilderness-slated-for-cell-coverage.html. Search in Google Scholar
203. Tobias, J. The park service is selling out to telecom giants, with Trump’s blessing, cell towers are infiltrating protected public lands across the west. High Country News; 2020. Available from: https://www.hcn.org/issues/52.3S/special-technology-the-park-service-is-selling-out-to-telecom-giants. Search in Google Scholar
204. Ketcham, C. Wiring the wilderness, the NP S is racing to expand cellphone service at parks nationwide. Do we really want a connected wild? Sierra; 2020. Available from: https://digital.sierramagazine.org/publication/?i=664414&article_id=3702685&view=articleBrowser. Search in Google Scholar
205. NRDC. United keetoowah band of Cherokee Indians in okla. V. FCC, 933 F.3d 728 (D.C. Cir. 2019); 2019. Search in Google Scholar
206. Meng, YS, Lee, YH, Ng, BC. Study of propagation loss in forest environment. Prog Electromagn Res B 2009;17:117–33. https://doi.org/10.2528/pierb09071901. Search in Google Scholar
207. Kingsley, D. Can’t hear the conversation for the trees, News in Science, ABC Science Online; 2002. Available from: http://www.abc.net.au/science/articles/2002/06/12/578753.htm. Search in Google Scholar
208. U.S. Federal Communications Commission. Federal Communications Commission Office of Engineering and Technology bulletin number 70 July, 1997, millimeter wave propagation: spectrum management implications. Federal Communications Commission Office of Engineering and Technology, New Technology Development Division; 1997. Available from: https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet70/oet70a.pdf. Search in Google Scholar
209. Hakusui, SS Fixed wireless communications at 60 GHz unique oxygen absorption properties, RF globalnet, news; 2001. Available from: https://www.rfglobalnet.com/doc/fixed-wireless-communications-at-60ghz-unique-0001. Search in Google Scholar
210. Ordance Survey 2018. Fifth generation mobile communications the effect of the built and natural environment on millimetric radio waves, Ordnance Survey 2018, for Department of Digital, Culture, Media and Sport February 2018 final report. Available from: http://bit.ly/Arbres_5G. Search in Google Scholar
211. U.S. NWTT. Navy northwest training and testing (NWTT 2021); 2021. Available from: https://nwtteis.com/. Search in Google Scholar
212. Jamail, D. Navy plans electromagnetic war games over national park and forest in Washington state; 2014. Available from: http://www.truth-out.org/news/item/27339-navy-plans-electromagnetic-war-games-over-national-park-and-forest-in-washington-state. Search in Google Scholar
213. Jamail, D. Documents show navy’s electromagnetic warfare training would harm humans and wildlife; 2014. Available from: http://www.truth-out.org/news/item/28009-documents-show-navy-s-electromagnetic-warfare-training-would-harm-humans-and-wildlife. Search in Google Scholar
214. Vulnerable birds in the Pacific Flyway; 2021. Available form: https://www.audubon.org/climate/survivalbydegrees/flyway/pacific. Search in Google Scholar
215. O’Rourke, M. Lessons in stillness from one of the quietest places on earth, in the wilderness of Washington State’s Hoh Rain Forest, a poet searches for the rare peace that true silence can offer. New York Times Magazine, travel issue; 2017. Available from: https://www.nytimes.com/2017/11/08/t-magazine/hoh-rain-forest-quietest-place.html. Search in Google Scholar
216. Hempton, G. One square inch, a sanctuary for silence at Olympic National Park; 2018. Available from: http://onesquareinch.org/. Search in Google Scholar
217. National Parks Conservation Association (NPCA). New studies find navy growler jet noise around Olympic National Park harmful to humans and orcas; 2020. Available from: https://www.npca.org/articles/2776-new-studies-find-navy-growler-jet-noise-around-olympic-national-park. Search in Google Scholar
218. U.S. Navy Northwest Training & Testing (NWTT). Update for: Olympic Coast National Marine Sanctuary (OCNMS) Advisory Council, January 20, 2017, John Mosher, U.S. pacific fleet, Dawn Grebner, Naval Undersea Warfare Center, Keyport, Jackie Queen, Naval Facilities Engineering Command NW; 2017. Available from: https://nmsolympiccoast.blob.core.windows.net/olympiccoast-prod/media/archive/involved/sac/nwtt_update-for-ocnms_advisory_council-20jan2017b.pdf. Search in Google Scholar
219. U.S. Navy Northwest Training & Testing (NWTT). U.S. Navy Northwest Training and Testing (NWTT) 2017a. Public scoping summary report, Northwest Training and testing supplemental environmental impact statement/overseas environmental impact statement, Final 14 December 2017; 2017. Available from: https://nwtteis.com/portals/nwtteis/files/public_information/NWTT_SEIS_OEIS-Scoping_Summary_Report.pdf. Search in Google Scholar
220. U.S. Navy Northwest Training and Testing (NWTTEIS). Supplemental environmental impact statement/overseas environmental impact statement (EIS/OEIS); 2017. Available from: https://www.nwtteis.com/FAQs. Search in Google Scholar
221. U.S. Navy Northwest Training and Testing (NWTTEIS). Draft environmental assessment for naval special operations training in Western Washington State, January 2018; 2018. Search in Google Scholar
222. U.S. Navy Northwest Training and Testing; 2018. Available from: http://nwtteis.com/SearchResults.aspx?Search=Northwest+Electromagnetic+Radiation+Warfare+program. Search in Google Scholar
223. U.S. Fish and Wildlife Service. Navy’s Northwest training and testing activities offshore waters of Northern California, Oregon, and Washington, the inland waters of puget sound, and portions of the Olympic Peninsul; 2016. Available from: https://nwtteis.com/portals/nwtteis/files/2015-2016/NWTT_Final_USFWS_Biological_Opinion_7-21-2016.pdf. Search in Google Scholar
224. U.S. Fish and Wildlife Service. Ibid 10.4.7.2.1.1., table 47, pp. 228 (Mosher, pers comm 2015; Navy 2014); 2016. Search in Google Scholar
225. Sierra Club (North Olympic Group). Letter to: EA 18G EIS Project Manager, Naval Facilities Engineering Command (NAVFAC) Atlantic, Attn: Code EV21/SS, 6506 Hampton Blvd., Norfolk, VA 23508, Re: Draft EIS for EA-18G growler airfield operations at Naval Air Station (NAS) Whidbey Island; 2017. Available from: https://www.sierraclub.org/sites/www.sierraclub.org/files/sce/north-olympic-group/NOG%20letter%20re%20Growler%20Draft%20EIS%202-18-17.pdf. Search in Google Scholar
226. Avian Power Line Interaction Committee (APLIC). Reducing avian collisions with power lines: the state of the art in 2012. Washington, DC: Edison Electric Institute and APLIC; 2012:159 p. Search in Google Scholar
227. Washburn, BE. Powerful tracking tools help reduce raptor conflicts. Wildl Prof 2015;9:34–7. Search in Google Scholar
228. Jamail, D. Emails reveal navy’s intent to break law, threatening endangered wildlife. Truthout, Monday. Available from: http://www.truth-out.org/news/item/35954-exclusive-emails-reveal-navy-s-intent-to-break-law-threatening-endangered-wildlife. Search in Google Scholar
229. Summary of the National Environmental Policy Act 42 U.S.C. §4321 et seq.; 1969. Available from: https://www.epa.gov/laws-regulations/summary-national-environmental-policy-act. Search in Google Scholar
230. U.S. Navy Northwest Training and Testing. Final supplemental EIS/OEIS. NWTT supplemental EIS/OEIS/documents/2020, northwest training and testing final supplemental EIS/OEIS/final supplemental EIS/OEIS; 2020. Search in Google Scholar
231. Save the Olympic Peninsula (SOP). Navy jets attempt evasive maneuver around NEPA; 2016. Available from: http://www.savetheolympicpeninsula.org/assets/update---navy-jets-attempt-evasive-maneuver.pdf. Search in Google Scholar
232. Save the Olympic Peninsula (SOP). Once again – we must oppose military training in Washington State Parks; 2016. Available from: http://www.savetheolympicpeninsula.org/. Search in Google Scholar
233. Sierra Club (North Olympic Group). Navy warfare training on the Olympic Peninsula; 2017. Available from: https://www.sierraclub.org/washington/north-olympic/navy-warfare-training-olympic-peninsula. Search in Google Scholar
234. U.S. Navy Northwest Training and Testing. Final supplemental EIS/OEIS. NWTT supplemental EIS/OEIS/documents/2020, northwest training and testing final supplemental EIS/OEIS/final supplemental EIS/OEIS 3.6.2.3.2 through 3.6.2.3.3.2, pp. 3.6-9 through 3.6.7.1; 2020. Search in Google Scholar
235. U.S. Fish and Wildlife Service. Navy’s northwest training and testing activities offshore waters of northern California, Oregon, and Washington, the inland waters of Puget sound, and portions of the olympic Peninsula, 10.4.7.2.1.3., pp. 231; 2016. Available from: https://nwtteis.com/portals/nwtteis/files/2015-2016/NWTT_Final_USFWS_Biological_Opinion_7-21-2016.pdf. Search in Google Scholar
236. U.S. Fish and Wildlife Service. Endangered species act – section 7 consultation, biological opinion, navy’s northwest training and testing activities offshore waters of Northem California, Oregon, and Washington, the inland waters of puget sound, and portions of the Olympic Peninsula, U.S. Fish and Wildlife Service reference: 0lEWFW00-2015-F-0251-R00l; 2018. Available from: https://www.nwtteis.com/portals/nwtteis/files/2015-2016/U.S._Fish_and_Wildlife_Service_Reinitiated_Biological_Opinion_for_NWTT_Activities_%28Dec_2018%29.pdf. Search in Google Scholar
237. Karam, MA, Fung, K, Antar, YMM. Electromagnetic wave scattering from some vegetation samples. IEEE Trans Geosci Rem Sens 1988;26:799–807. https://doi.org/10.1109/36.7711. Search in Google Scholar
238. Karam, MA, Fung, AK, Amar, F. Electromagnetic wave scattering from a forest or vegetation canopy: ongoing research at the University of Texas at Arlington. IEEE Antenn Propag Mag 1993;35:18–26. https://doi.org/10.1109/74.207648. Search in Google Scholar
239. Pall, ML. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med 2013;17:958–65. https://doi.org/10.1111/jcmm.12088. Search in Google Scholar
240. Steiner, I, Bruderer, B. Anfangsorientierung und Heimkehrverhalten von Brieftauben unter dem Einfluss vonKurzwellen. J Ornithol 1999;140:34–41. https://doi.org/10.1007/bf01653596. Search in Google Scholar
241. Bruderer, B, Peter, D, Steuri, T. Behavior of migrating birds exposed to X-band radar and a brightlight beam. J Exp Biol 1999;202:1015–22. Search in Google Scholar
242. Wasserman, FE, Dowd, C, Schlinger, BA, Byman, D, Battista, SP, Kunz, TH. The effects of microwave radiation on avian dominance behavior. Bioelectronmagnetics 1984;5:331–9. https://doi.org/10.1002/bem.2250050306. Search in Google Scholar
243. Grigor’ev, I. Biological effects of mobile phone electromagnetic field on chick embryo (risk assessment using the mortality rate). Radiats Biol Radioecol 2003;43:541–3. Search in Google Scholar
244. Xenos, TD, Magras, LN. Low power density RF radiation effects on experimental animal embryos and fetuses. In: Stavroulakis, P, editor. Biological effects of electromagnetic fields. New York, NY, USA: Springer; 2003:579–602 pp. Search in Google Scholar
245. Kuehne, LM, Erbe, C, Ashe, E, Bogaard, LT, Collins, MS, Williams, R. Above and below: military aircraft noise in air and under water at Whidbey Island, Washington. J Mar Sci Eng 2020;8:923. https://doi.org/10.3390/jmse8110923. Search in Google Scholar
246. NBC News. Smart refrigerators hacked to send out spam: report, Jan.18.2014/4:46 PM ET/Updated Jan.18.2014/5:20 PM ET. Available from: https://www.nbcnews.com/tech/internet/smart-refrigerators-hacked-send-out-spam-report-n11946. Search in Google Scholar
247. U.S. Government Accountability Office (GAO). 5G deployment, FCC needs comprehensive strategic planning to guide its efforts, GAO-20-468: Published: Jun 12, 2020. Publicly released: Jun 29, 2020; 2020. Available from: https://www.gao.gov/products/GAO-20-468. Search in Google Scholar
248. Levitt, BB. Fiber broadband and small cells: an unholy municipal alliance, Counterpunch; 2019. Available from: https://www.counterpunch.org/2019/05/13/fiber-broadband-and-small-cells-an-unholy-municipal-alliance/. Search in Google Scholar
249. Pai, A. Statement of Chairman Ajit Pai, Federal Communications Commission, hearing on oversight of the Federal Communications Commission, before the United States Committee on Commerce, Science and Transportation. Washington, D.C.; 2018. Search in Google Scholar
250. Pai, A. Remarks of FCC Chairman Ajit Pai to the American Council of Technology-Industry Advisory Council (ACT-IAC) Webinar on “5G: the future of digital connectivity and commerce”; 2020. Available from: https://www.fcc.gov/document/pai-act-iac-webinar-5g-future-digital-connectivity. Search in Google Scholar
251. Dinucci, M. 5G, the new track of the arms race. Global research; 2020. Available from: https://www.globalresearch.ca/5g-arms-race/5715138. Search in Google Scholar
252. Statement of Jessica Rosenworcel, Commissioner, Federal Communications Commission. Hearing on oversight of the Federal Communications Commission before the United States Committee on Commerce, Science and Transportation. Washington, D.C.; 2018. Search in Google Scholar
253. Leszczynski, D. A class action against 5G deployment in Australia; 2018. Available from: https://www.emfacts.com/2018/07/a-class-action-against-5g-deployment-in-australia/. Search in Google Scholar
254. Hardell, L, Nyberg, R. Comment: appeals that matter or not on a moratorium on the deployment of the fifth generation, 5G, for microwave radiation. Mol Clin Oncol 2020;12:247–57. https://doi.org/10.3892/mco.2020.1984. Search in Google Scholar
255. Seipel, T. California: Gov. Jerry Brown vetoes bill easing permits on cell phone towers. The Mercury News; 2017. Available from: https://www.mercurynews.com/2017/10/16/california-gov-jerry-brown-vetoes-bill-easing-permits-on-cell-phone-towers/. Search in Google Scholar
256. Erwin, DN, Hurt, WD. Assessment of possible hazards associated with applications of millimeter-wave systems. Aeromedical review USAF-SAM 2-81. USAF School of Aerospace Medicine, Aerospace Medical Division, Brooks AFB, TX 1981. Search in Google Scholar
257. Gandhi, O, Riazi, A. Absorption of millimeter waves by human beings and its biological implications. IEEE Trans Microw Theor Tech 1986;34:228–35. https://doi.org/10.1109/tmtt.1986.1133316. Search in Google Scholar
258. Marshall, TG, Rumann Heil, TJ. Electrosmog and autoimmune disease. Immunol Res 2017;65:129–35. https://doi.org/10.1007/s12026-016-8825-7. Search in Google Scholar
259. Joint Intermediate Force Capabilities Office, U.S Department of Defense Non-Lethal Weapons Program, Fact Sheets; 2020. Available from: https://jnlwp.defense.gov/Press-Room/Fact-Sheets/Article-View-Fact-sheets/Article/577989/active-denial-technology/. Search in Google Scholar
260. Jauchem, J. Bibliography of the Radio Frequency Radiation Branch, Directed Energy Bioeffects Division, Human Effectiveness Directorate, Air Force Research Laboratory: 1997–2003; 2004. Available from: https://www.researchgate.net/publication/235019072_Bibliography_of_the_Radio_Frequency_Radiation_Branch_Directed_Energy_Bioeffects_Division_Human_Effectiveness_Directorate_Air_Force_Research_Laboratory_1997-2003. Search in Google Scholar
261. DARPA seeks to Improve Military Communications with Digital Phased-Arrays at Millimeter Wave, New program aims to create multi-beam, digital phased-array technology, operating at 18–50 GHz to enhance secure communications between military platforms. Available from: https://www.darpa.mil/news-events/2018-01-24. Search in Google Scholar
262. Kenney, JM, Ziskin, M, Adair, RA, Murray, B, Farrer, D, Marks, L, et al.. A narrative summary and independent assessment of the active denial system. The Human Effects Advisory Panel (HEAP), Penn State Applied Research Lab, February 11, 2008. Submitted in fulfillment of USMC contract no. M67854-05-D-5153-0007, Joint Non-Lethal Weapons Directorate, U.S. Department of Defense, pp. 23–26; 2008. Available from: https://jnlwp.defense.gov/Portals/50/Documents/Future_Non-Lethal_Weapons/HEAP.pdf. Search in Google Scholar
263. Malyaso, D. U.S. Air Force to spend $31 million for research ‘bioeffects’ of directed energy weapons, Defense Blog; 2019. Available from: https://defence-blog.com/news/u-s-air-force-to-spend-31million-for-research-bioeffects-of-directed-energy-weapons.html. Search in Google Scholar
264. TASS. Russian News Agency Experts confirm technical readiness for study of 5G’s effects on Moscow residents. The scheduled study must reveal, what level of radiation of various standards is safe for humans 8 Jul, 2020 10:58; 2020. Available from: https://tass.com/society/1176193. Search in Google Scholar
265. Bushberg, JT, Chou, CK, Foster, KR, Kavet, R, Maxson, DP, Tell, RA, et al.. IEEE committee on man and radiation—comar technical information statement: health and safety issues concerning exposure of the general public to electromagnetic energy from 5G wireless communications networks. Health Phys 2020;119:236–46. https://doi.org/10.1097/hp.0000000000001301. Search in Google Scholar
266. Bose, JC. On the determination of the wavelength of electric radiation by a diffraction grating. Proc Roy Soc Lond 1897;60:167–78. Search in Google Scholar
267. Bose, JC. On the change of conductivity of metallic particles under cyclic electromotive variation. In: Bose, JC, editor. Originally presented to the British Association at Glasgow, September 1901, reproduced in collected physical papers. New York, N.Y.: Longmans, Green and Co.; 1927. Search in Google Scholar
268. Emerson, DT. The work of jagadis chandra bose: 100 years of millimeter-wave research. IEEE Trans Microw Theor Tech 1997;45:2267–73. https://doi.org/10.1109/22.643830. Search in Google Scholar
269. Pakhomov, AG, Akyel, Y, Pakhomova, ON, Stuck, BE, Murphy, MR. Current state and implications of research on biological effects of millimeter waves: a review of the literature. Bioelectromagnetics 1998;19:393–413. https://doi.org/10.1002/(sici)1521-186x(1998)19:7<393::aid-bem1>3.0.co;2-x. Search in Google Scholar
270. Golant, MB. Problem of the resonance action of coherent electromagnetic radiations of the millimetre wave range on living organisms. Biophysics 1989;34:370–82. Search in Google Scholar
271. Golant, MB. Resonance effect of coherent millimetre-band electromagnetic waves on living organisms. Biofizika 1989;34:1004–14 (in Russian). English translation: Biophysics 1989;34:1086–98. Search in Google Scholar
272. Betzkii, OV. Use of low-intensity electromagnetic millimeter waves in medicine. Millimetrovie Volni v Biologii i Meditcine 1992;1:5–12 (in Russian). Search in Google Scholar
273. Betskii, OV, Devyatkov, ND, Kislov, VV. Low intensity millimeter waves in medicine and biology. Crit Rev Biomed Eng 2000;28:247–68. https://doi.org/10.1615/critrevbiomedeng.v28.i12.420. Search in Google Scholar
274. Berezhinskii, LL, Gridina, NI, Dovbeshko, GI, Lisitsa, MP, Litvinov, GS. Visualization of the effects of millimeter radiation on tremely high-frequency electromagnetic radiation on the function blood plasma. Biofizika 1993;38:378–84 (in Russian). Search in Google Scholar
275. Fesenko, EE, Gluvstein, AY. Changes in the state of water induced by radiofrequency electromagnetic fields. FEBS Lett 1995;367:53–5. https://doi.org/10.1016/0014-5793(95)00506-5. Search in Google Scholar
276. Khizhnyak, EP, Ziskin, MC. Temperature oscillations in liquid media caused by continuous (nonmodulated) millimeter wavelength electromagnetic irradiation. Bioelectromagnetics 1996;17:223–9. https://doi.org/10.1002/(sici)1521-186x(1996)17:3<223::aid-bem8>3.0.co;2-5. Search in Google Scholar
277. Kudryashova, VA, Zavizion, VA, Khurgin, YV. Effects of stabilization and destruction of water structure by amino acids. In: Moscow, Russia: 10th Russian symposium “millimeter waves in medicine and biology” (Digest of papers). Moscow: IRE RAN; 1995:213–5 pp. (in Russian). Search in Google Scholar
278. Litvinov, GS, Gridina, NY, Dovbeshko, GI, Berezhinsky, LI, Lisitsa, MP. Millimeter wave effect on blood plasma solution. Electro- Magnetobiol 1994;13:167–74. https://doi.org/10.3109/15368379409030711. Search in Google Scholar
279. Zavizion, VA, Kudriashova, VA, Khurgin, YI. Effect of alpha-amino acids on the interaction of millimeter-wave radiation with water. Millimetrovie Volni v Biologii i Meditcine 1994;3:46–52 (in Russian). Search in Google Scholar
280. Ryakovskaya, ML, Shtemler, VM. Absorption of electromagnetic waves of millimeter range in biological preparations with a plane-layer structure. In: Devyatkov, ND, editor. Effect of nonthermal action of millimeter radiation on biological subjects. Moscow: USSR Academy of Sciences; 1983:172–81 pp. (in Russian). Search in Google Scholar
281. Pakhomov, A, Murphy, MR. A comprehensive review of the research on biological effects of pulsed radio frequency radiation in Russia and the Former Soviet Union. In: Lin, J, editor. Advances in electromagnetic fields in living systems. Plenum: Kluwer Academic Press; 2000, vol 3:265–90 pp. Search in Google Scholar
282. Yanenko, ОP, Peregudov, SN, Fedotova, IV, Golovchanska, OD. Equipment and technologies of low intensity millimeter therapy; 2014. Number 59 103ISSN 621.317 (in Russian). Available from: https://cyberleninka.ru/article/n/equipment-and-technologies-of-low-intensity-millimeter-therapy. Search in Google Scholar
283. Betzalel, N, Feldman, Y, Ishai, B. The Modeling of the absorbance of sub-THz radiation by human skin. IEEE Trans Terahertz Sci Technol 2018;7:521–8. Search in Google Scholar
284. Cosentino, K, Beneduci, A, Ramundo-Orlando, A, Chidichimo, G. The influence of millimeter waves on the physical properties of large and giant unilamellar vesicles. J Biol Phys 2013;39:395–410. https://doi.org/10.1007/s10867-012-9296-2. Search in Google Scholar
285. Betzalel, N, Ishai, P, Feldman, Y. The human skin as a sub-THz receiver – does 5G pose a danger to it or not? Environ Res 2018;163:208–16. https://doi.org/10.1016/j.envres.2018.01.032. Search in Google Scholar
286. Betskii, OV, Lebedeva, NN. Low-intensity millimeter waves in biology and medicine, access through; 2000. Available from: https://stopsmartmetersbc.com/wp-content/uploads/2020/07/Low-intensity-Millimeter-Waves-in-Biology-and-Medicine-by-O.V.-Betskii-and-N.N.-Lebedeva-Moscow-Russia-2000.pdf. Search in Google Scholar
287. Thielens, A, Bell, D, Mortimore, DB, Greco, MK, Martens, L, Joseph, W. Exposure of insects to radio-frequency electromagnetic fields from 2 to 120 GHz. Sci Rep 2018;8:3924. https://doi.org/10.1038/s41598-018-22271-3. Search in Google Scholar
288. Thielens, A, Greco, MK, Verloock, L, Martens, L, Joseph, W. Radio-frequency electromagnetic field exposure of western honey bees. Sci Rep 2020;10:461. https://doi.org/10.1038/s41598-019-56948-0. Search in Google Scholar
289. Frohlich, H. The biological effects of microwaves and related questions. Adv Electron Electron Phys 1980;53:85–152. https://doi.org/10.1016/s0065-2539(08)60259-0. Search in Google Scholar
290. Frohlich, H, editor. Biological coherence and response to external stimuli. Berlin: Springer-Verlag; 1988:265 p. Search in Google Scholar
291. Gandhi, OP. Some basic properties of biological tissues for potential biomedical applications of millimeter-waves. J Microw Power 1983;18:295–304. https://doi.org/10.1080/16070658.1983.11689334. Search in Google Scholar
292. Grundler, W. Biological effects of RF and MW energy at molecular and cellular level. In: Rindi, A, Grandolfo, M, Michaelson, SM, editors. Biological effects and dosimetry of radiation. Radiofrequency and microwave energies. New York: Plenum Press; 1983:299–318 pp. Search in Google Scholar
293. Postow, E, Swicord, ML. Modulated fields and “window” effects. In: Polk, C, Postow, E, editors. Handbook of biological effects of electromagnetic fields. Boca Raton, FL: CRC Press, Inc.; 1986:425–60 pp. Search in Google Scholar
294. Grundler, W, Keilman, F, Froehlich, H. Resonant growth rate response of yeast cells irradiated by weak microwaves. Phys Lett 1977;62A:463–6. https://doi.org/10.1016/0375-9601(77)90696-x. Search in Google Scholar
295. Grundler, W, Keilman, F, Putterlik, V, Strube, D. Resonant-like dependence of yeast growth rate on microwave frequencies. Br J Canc 1982;45:206–8. Search in Google Scholar
296. Grundler, W, Jentzsch, U, Keilmann, F, Putterlik, V. Resonant cellular effects of low intensity microwave. In: Froehlich, H, editor. Biological coherence and response to external stimuli. Berlin: Springer-Verlag; 1988:65–85 pp. Search in Google Scholar
297. Golant, MB, Kuznetsov, AP, Boszhanova, TP. Mechanisms of synchronization of the yeast cell culture by the action of EHF radiation. Biofizika 1994;39:490–5 (in Russian). Search in Google Scholar
298. Pakhomova, ON, Pakhomov, AG, Akyel, Y. Effect of millimeter millimeter waves on UV-induced recombination and mutagenesis in yeast. Bioelectrochem Bioenerg 1997;43:227–32. https://doi.org/10.1016/s0302-4598(96)05158-6. Search in Google Scholar
299. Dardanoni, L, Torregrossa, MV, Zanforlin, L. Millimeter wave effects on Candida albicans cells. J Bioelectr 1985;4:171–6. Search in Google Scholar
300. Shestopalova, NG, Makarenko, BI, Golovina, LN, Timoshenko, YP, Baeva, TI, Vinokurova, LV, et al.. Modification of synchronizing effect of millimeter waves on first mitoses by different temperature regimens of germination. In: Moscow, Russia: 10th Russian symposium “millimeter waves in medicine and biology” April, 1995 (Digest of papers). Moscow: IRE RAN; 1995:236–7 pp. (in Russian). Search in Google Scholar
301. Levina, MZ, Veselago, IA, Belaya, TI, Gapochka, LD, Mantrova, GM, Yakovleva, MN. Influence of low-intensity VHF irradiation on growth and development of protozoa cultures. In: Deyatkov, ND, editor. Millimeter waves in medicine and biology. Moscow: Radioelectronica; 1989:189–95 pp. (in Russian). Search in Google Scholar
302. Tambiev, AK, Kirikova, NN, Lapshin, OM, Betzkii, OV, Novskova, TA, Nechaev, VM, et al.. The combined effect of exposure to EMF of millimeter and centimeter wavelength ranges on productivity of microalgae. In: Devyatkov, ND, editor. Millimeter waves in medicine and biology. Moscow: Radioelectronica; 1989:183–8 pp. (in Russian). Search in Google Scholar
303. Kremer, F, Santo, L, Poglitsh, A, Koschnitzke, C, Behrens, H, Genzel, L. The influence of low intensity millimetre waves on biological systems. In: Froehlich, H, editor. Biological coherence and response to external stimuli. Berlin: Springer-Verlag; 1988:86–101 pp. Search in Google Scholar
304. Rojavin, MA, Ziskin, MC. Medical application of millimetre waves. Q J Med 1998;91:57–66. https://doi.org/10.1093/qjmed/91.1.57. Search in Google Scholar
305. Brovkovich, VM, Kurilo, NB, Barishpol’ts, VL. Action of millimeter-range electromagnetic radiation on the Ca pump of sarcoplasmic reticulum. Radiobiologiia 1991;31:268–71 (in Russian). Search in Google Scholar
306. Burachas, G, Mascoliunas, R. Suppression of nerve action potential under the effect of millimeter waves. In: Devyatkov, ND, editor. Millimeter waves in medicine and biology. Moscow: Radioelectronica; 1989:168–75 pp. (in Russian). Search in Google Scholar
307. Chernyakov, GM, Korochkin, VL, Babenko, AP, Bigdai, EV. Reactions of biological systems of various complexity to the action of low-level EHF radiation. In: Devyatkov, ND, editor. Millimeter waves in medicine and biology. Moscow: Radioelectronica; 1989:141–67 pp. (in Russian). Search in Google Scholar
308. Pakhomov, AG, Prol, HK, Mathur, SP, Akyel, Y, Campbell, CBG. Search for frequency-specific effects of millimeter-wave radiation on isolated nerve function. Bioelectromagnetics 1997;18:324–34. https://doi.org/10.1002/(sici)1521-186x(1997)18:4<324::aid-bem5>3.0.co;2-4. Search in Google Scholar
309. Pakhomov, AG, Prol, HK, Mathur, SP, Akyel, Y, Campbell, CBG. Frequency-specific effects of millimeter wavelength electromagnetic radiation in isolated nerve. Electro- Magnetobiol 1997;16:43–57. https://doi.org/10.3109/15368379709016172. Search in Google Scholar
310. Pakhomov, AG, Prol, HK, Mathur, SP, Akye, Y, Campbell, CBG. Role of field intensity in the biological effectiveness of millimeter waves at a resonance frequency. Bioelectrochem Bioenerg 1997;43:27–33. https://doi.org/10.1016/s0302-4598(97)00022-6. Search in Google Scholar
311. Bulgakova, VG, Grushina, VA, Orlova, TL, Petrykina, ZM, Polin, AN, Noks, PP, et al.. Effect of millimeter-band radiation of nonthermal intensity on the sensitivity of Staphylococcus to various antibiotics. Biofizika 1996;41:1289–93 (in Russian). Search in Google Scholar
312. Akoev, GN, Avelev, VD, Semen’kov, PG. Perception of the low-level millimeter-range electromagnetic radiation by electroreceptors of the ray. Dokl Akad Nauk 1992;322:791–4 (in Russian). Search in Google Scholar
313. Potekhina, IL, Akoyev, GN, Yenin, LD, Oleyner, VD. Effects of low-intensity electromagnetic radiation in the millimeter range on the cardio-vascular system of the white rat. Fiziol Zh 1992;78:35–41 (in Russian). Search in Google Scholar
314. Kholodov, YA. Basic problems of electromagnetic biology. In: Markov, M, Blank, M, editors. Electromagnetic fields and biomembranes. Boston, MA: Springer; 1988:109–16 pp. Search in Google Scholar
315. Markov, M, Blank, M, editors. Electromagnetic fields and biomembranes. Boston, MA: Springer-Verlag US; 1988. Search in Google Scholar
316. Levedeva, NN. Neurophysiological mechanisms of biological effects of peripheral action of low-intensity nonionizing electromagnetic fields in humans. In: Moscow, Russia: 10th Russian symposium “millimeter waves in medicine and biology” (Digest of papers). Moscow: IRE RAN; 1995:138–40 pp. (in Russian). Search in Google Scholar
317. Kolbun, ND, Lobarev, VE. Bioinformation interactions: EMF-waves. Kibern Vychislitel’naya Tekhnika 1988;78:94–9. Search in Google Scholar
318. Betskii, OV. On the mechanisms of interaction of low-intensity millimeter waves with biological objects. Radiophys Quantum Electron 1994;37:16–22. https://doi.org/10.1007/bf01039297. Search in Google Scholar
319. Betskii, OV, Putvinskii, AV. Biological action of low intensity millimeter band radiation. Izv Vyssh Uchebn Zaved Radioélektron 1986;29:4 (in Rusian). Search in Google Scholar
320. Chukova, YP. Dissipative functions of the processes of interaction of electromagnetic radiation with biological objects. Biophysics 1989;34:975–8. Search in Google Scholar
321. Devytkov, ND, Goland, MB. Informational nature of the nonthermal and some of the energy effects of electromagnetic waves on a living organism. Pis’ma Zh Tekh Fiz 1982;8:39–41. Search in Google Scholar
322. Devytkov, ND, Goland, MB, Trager, AC. Role of synchronization in the impact of weak electromagnetic signals in the millimeter wave range on living organisms. Biophysics 1983;28:953–4. Search in Google Scholar
323. Golant, MB, Poruchikov, PV. Role of coherent waves in pattern recognition and the use of intracellular information. Pis’ma Zh Tekh Fiz 1989;15:67–70. Search in Google Scholar
324. Golant, MB, Rebrova, TB. Similarities between living organisms and certain microwave devices. Izv Vyssh Uchebn Zaved Radioélektron 1986;29:10–19. Search in Google Scholar
325. Ramundo-Orlando, A. Effects of millimeter waves radiation on cell membrane – a brief review. J Infrared, Millim Terahertz Waves 2010;31:1400–11. https://doi.org/10.1007/s10762-010-9731-z. Search in Google Scholar
326. Simkó, M, Mattsson, MO. 5G wireless communication and health effects–a pragmatic review based on available studies regarding 6–100 GHz. Int J Environ Res Publ Health 2019;16:3406. https://doi.org/10.3390/ijerph16183406. Search in Google Scholar
327. Alekseev, SL, Ziskin, MC. Biological effects of millimeter and submillimeter waves. In: Greenebaum, B, Barnes, F, editors. Handbook of biological effects of electromagnetic fields, 4th ed. Boca Raton, FL: CRC Press; 2019, Chapter 6:179–242 pp. Search in Google Scholar
328. Siegel, PH, Pikov, V. Impact of low intensity millimetre waves on cell functions. Electron Lett 2010;46:70–2. https://doi.org/10.1049/el.2010.8442. Search in Google Scholar
329. Albanese, RA. Is phased array radiation a separate category that requires safety testing? Unpublished article submitted to Air Force review, Sept. 2000. Search in Google Scholar
330. Albanese, R. Why would a medical doctor in Texas have a concern about the PAVE PAWS radar system on Cape Cod? Cape Cod Times, Letter to the editor, January 27, 2002. Search in Google Scholar
331. Erdreich, L, Gandhi, OP, Lai, H, Ziskin, MC. Assessment of public health concerns associated with PAVE PAWS radar installations. Report prepared for the Massachusetts Department of Public Health; 1999. Available from: https://www.globalsecurity.org/space/library/report/1999/cape-cod_pavepaws-assess.htm. Search in Google Scholar
332. Moulder, J, Rockwell, S. Critiquing unpublished theories. Radiat Res 2003;159:1–2. https://doi.org/10.1667/0033-7587(2003)159[0001:cut]2.0.co;2. Search in Google Scholar
333. Albanese, R, Penn, J, Medina, R. Short-rise-time microwave pulse propagation through dispersive biological media. J Opt Soc Am A 1989;6:1441–6. https://doi.org/10.1364/josaa.6.001441. Search in Google Scholar
334. Albanese, RA, Penn, JW, Medina, RL. An electromagnetic inverse problem in medical science. In: Corones, JP, Nelson, P, Kristenssoneditor, G, editors. Invariant imbedding and inverse problems. Philadelphia: Society for Industrial and Applied Mathematics (SIAM); 1992:30–41 pp. Search in Google Scholar
335. Albanese, R, Penn, J, Medina, R. Ultrashort pulse response in nonlinear dispersive media. In: Bertoni, HL, Carin, L, Felsen, LB, editors. Ultra-wideband, short-pulse electromagnetics. New York, NY, USA: Plenum Publishing; 1993:259–65 pp. Search in Google Scholar
336. Albanese, R, Blaschak, J, Medina, R, Penn, J. Ultrashort electromagnetic signals: biophysical questions, safety issues, and medical opportunities. Aviat Space Environ Med 1994;65(Suppl):A116–20. Search in Google Scholar
337. Albanese, RA, Medina, RL, Penn, JW. Mathematics, medicine, and microwaves. Inverse Probl 1994;10:995–1007. https://doi.org/10.1088/0266-5611/10/5/001. Search in Google Scholar
338. Moten, K, Durney, CH, Stockham, TG. Electromagnetic pulse propagation in dispersive planar dielectrics. Bioelectromagnetics 1989;10:35–49. https://doi.org/10.1002/bem.2250100105. Search in Google Scholar
339. Oughstun, KE, Sherman, GC. Electromagnetic pulse propagation in causal dielectrics, Springer series on wave phenomena. Berlin-Heidelberg: Springer-Verlag; 1994, vol 16. Search in Google Scholar
340. Hill, K. Transitioning to a 5G world. RCR wireless; 2017. Available from: http://bit.ly/5Ghype. Search in Google Scholar
341. National Research Council. An assessment of potential health effects from exposure to PAVE PAWS low-level phased-array radiofrequency energy. National Research Council; 2005:68–93 pp. Search in Google Scholar
342. Blaschak, JG, Franzen, J. Precursor propagation in dispersive media from short-rise-time pulses at oblique incidence. J Opt Soc Am A 1995;12:1501–12. https://doi.org/10.1364/josaa.12.001501. Search in Google Scholar
343. Oughstun, KE. Noninstantaneous, finite rise-time effects on the precursor field formation in linear dispersive pulse propagation. J Opt Soc Am A 1995;12:1715–29. https://doi.org/10.1364/josaa.12.001715. Search in Google Scholar
344. Oughstun, KE. Dynamical evolution of the Brillouin precursor in the Rocard–Powles–Debye model dielectrics. IEEE Trans Antenn Propag 2005;53:1582–90. https://doi.org/10.1109/tap.2005.846452. Search in Google Scholar
345. Oughstun, K. Electromagnetic and optical pulse propagation 1: temporal pulse dynamics in dispersive, attenuative media. New York, NY, USA: Springer International Publishing; 2006. Search in Google Scholar
346. Palombini, C, Oughstun, K. Reflection and transmission of pulsed electromagnetic fields through multilayered biological media. In: Proceedings – 2011 international conference on electromagnetics in advanced applications, ICEAA’11; 2011. Search in Google Scholar
347. Xu, X, Chen, P. A study on the possibility of applying precursor waves to penetration imaging. In: IEEE 2010 international conference on electromagnetics in advanced applications (ICEAA) – Sydney, Australia (2010.09.20–2010.09.24); 2010. Search in Google Scholar
348. Sommerfeld, A. Uber die fortpflanzung des lichtes in diesperdierenden medien. Ann Phys 1914;44:177–202. [English translation available in Brillouin, L., 1960: About the propagation of light in dispersive media. Wave Propagation and Group Velocity, Pure Appl Phys 1960;8:17–42]. Search in Google Scholar
349. Brillouin, L. Uber die fortpflanzung des lichtes in diesperdierenden medien Ann Phys 1914;44:203–240. [English translation available in Brillouin L. About the propagation of light in dispersive media. Wave Propagation and Group Velocity, Pure Appl Phys 1960;8:43–83]. Search in Google Scholar
350. Plesko, P, Palocz, I. Experimental observation of the Sommerfeld and Brillouin precursors in the microwave domain. Phys Rev Lett 1969;22:1201–4. Search in Google Scholar
351. Albanese, RA. Wave propagation inverse problems in medicine and environmental health. In: Chavent, G, Sacks, P, Papanicolaou, G, Symes, WW, editors. Inverse problems in wave propagation. The IMA volumes in mathematics and its applications. New York, NY: Springer; 1997, vol 90:1–11 pp. Search in Google Scholar
352. Albanese, RA, Bell, EL. Radiofrequency radiation and chemical reaction dynamics. In: Adey, WR, Lawrence, AF, editors. Nonlinear electrodynamics in biological systems. New York, NY, USA: Plenum Publishing; 1984:277–85 pp. Search in Google Scholar
353. Albanese, RA, Bell, EL. Electromagmetic pulse distortion by a half-space. In: Abstracts of the seventh annual meeting of the bioelectromagnetics society; 1985:40 p. Search in Google Scholar
354. Rogers, W. Extension of the single pulse, contact stimulation strength duration curve down to 5 nanoseconds. Poster 116. Quebec City, Canada: Bioelectromagnetics Society; 2002. Search in Google Scholar
355. D’Ambrosio, R, Massa, M, Scarfi, R, Zeni, O. Cytogentic damage in human lymphocytes following GMSK phase modulated microwave exposure. Bioelectromagnetics 2002;23:7–13. https://doi.org/10.1002/bem.93. Search in Google Scholar
356. Yamazaki, S, Harata, M, Ueno, Y, Tsubouchi, M, Konagaya, K, Ogawa, Y, et al.. Propagation of THz irradiation energy through aqueous layers: demolition of actin filaments in living cells. Sci Rep 2020;10:9008. https://doi.org/10.1038/s41598-020-65955-5. Search in Google Scholar
357. Haas, H. LiFi is a paradigm-shifting 5G technology. Rev Phys 2018;3:26–31. https://doi.org/10.1016/j.revip.2017.10.001. Search in Google Scholar
358. Buck, J. NASA laser communication system sets record with data transmissions to and from moon. NASA. Available from: http://www.nasa.gov/press/2013/october/nasa-laser-communication-system-sets-record-with-data-transmissions-to-and-from/#.UnayBpRAQcx. Search in Google Scholar
359. Riebeek, H. Catalog of earth satellite orbits, NASA earth observatory; 2009. Available from: https://earthobservatory.nasa.gov/Features/OrbitsCatalog. Search in Google Scholar
360. U.S. Federal Communications Commission. Public notice: further guidance for broadcasters regarding radiofrequency radiation and the environment; 1986. Available from: https://docs.fcc.gov/public/attachments/DOC-8507A1.pdf. Search in Google Scholar
361. O’Callaghan, J. The FCC’s approval of SpaceX’s Starlink mega constellation may have been unlawful. Scienftific American Space; 2020. https://www.scientificamerican.com/article/the-fccs-approval-of-spacexs-starlink-mega-constellation-may-have-been-unlawful/. Search in Google Scholar
362. Lehoucq, R, Graner, F. The costly collateral damage from Elon Musk’s Starlink satellite fleet, Phys.org; 2020. Available from: https://phys.org/news/2020-05-costly-collateral-elonmusk-starlink-satellite.html. Search in Google Scholar
363. Cao, S. SpaceX Starlink tracker: every satellite launched and how to see them in the sky. Observer 08/08/20 8:11 am; 2020. Available from: https://observer.com/2020/08/spacex-starlink-satellite-launch-tracker-how-to-see-in-sky/. Search in Google Scholar
364. U.S. Federal Communications Commission (FCC). Public notice, Federal Communications Commission, 445 12th street S.W.Washington D.C. 20554, news media information 202-418-0500 internet: http://www.fcc.gov (or ftp.fcc.gov)TTY (202) 418-2555 Wednesday March 18, 2020 Report No. SES-02250 re: actions taken satellite communications services information; 2020. Available from: https://licensing.fcc.gov/ibfsweb/ib.page.FetchPN?report_key=2225961. Search in Google Scholar
365. Zafar, R. SpaceX wins FCC approval to test Starlink ground stations in 6 states, WCCFTech; 2020. Available from: https://wccftech.com/spacex-starlink-ground-stations-test/. Search in Google Scholar
366. Shields, T. Amazon’s kuiper satellite plan wins backing of FCC chair, bloomberg technology, July 10, 2020, 5:59 PM EDT Updated on July 10, 2020, 9:30 PM EDT; 2020. Available from: https://www.bloomberg.com/news/articles/2020-07-10/amazon-s-kuiper-satellite-plan-wins-backing-of-fcc-chairman. Search in Google Scholar
367. U.S. Federal Communications Commission. International bureau FCC selected application listing BY file number report WR07 – wed aug 22 16:16:00 US/eastern 2018. File number = SATLOA2016111500118; 2018. Available from: https://licensing.fcc.gov/cgi-bin/ws.exe/prod/ib/forms/reports/swr031b.hts?q_set=V_SITE_ANTENNA_FREQ.file_numberC/File+Number/%3D/SATLOA2016111500118&prepare=&column=V_SITE_ANTENNA_FREQ.file_numberC/File+Number&utm_content=bufferda647. Search in Google Scholar
368. Erwin, S. GAO flags concerns about procurement of DoD’s early warning satellites, Space News; 2020. Available from: https://spacenews.com/gao-flags-concerns-about-procurement-of-dods-early-warning-satellites/. Search in Google Scholar
369. Erwin, S. SATELLITES: on national security, the promise and perils of LEO constellations. Space News; 2020. Available from: https://spacenews.com/the-promise-and-perils-of-leo-constellations/. Search in Google Scholar
370. Wattles, J. SATELLITES: SpaceX and ULA win military launch competition worth $653 million -- and that’s just the start. CNN Business, Updated 7:46 PM ET; 2020. Available from: https://www.cnn.com/2020/08/07/tech/spacex-ula-military-national-security-contract-scn/index.html. Search in Google Scholar
371. Shepardson D. Key U.S.Senate republican places hold on FCC nomination over Ligado. Reuters U.S. July 28, 2020/3:48 PM; 2020. Available from: https://www.reuters.com/article/us-usa-telecom-wireless-idUSKCN24T2QO. Search in Google Scholar
372. NRDC. Brief: Natural Resources Defense Council et al. as Amici Curiae in support of Petitioners, Envtl. Health Trust et al. v. FCC, D.C. Circuit Nos. 20–1025 20-1025, 20-1138 (August 5, 2020); 2020. Available from: https://www.nrdc.org/sites/default/files/amicus-brief-fcc-20200805.pdf. Search in Google Scholar
373. Raghuram, R, Bell, TF, Helliwell, RA, Katsufrakis, JP. A quiet band produced by VLF transmitter signals in the magnetosphere. Geophys Res Lett 1977;4:199–202. https://doi.org/10.1029/gl004i005p00199. Search in Google Scholar
374. Robinson, TR, Yeomanm, TK, Dhillon, RS. Environmental impact of high power density microwave beams on different atmospheric layers. Radio and Space Plasma Physics Group, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK. ESA contract number: 18156/04/NL/MV; 2004. Available from: http://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-NRG-ARI-04-9102-Environmental_impacts_of%20microwave_beams-Report.pdf. Search in Google Scholar
375. Koh, C. The benefits of 60 GHz unlicensed wireless communications. Comments filed at FCC; 2004. Available from: https://www.fcc.gov/file/14379/download. Search in Google Scholar
376. Helliwell, RA. Whistlers and related ionospheric phenomena. Mineola, N.Y.: Dover Publications; 1965. Search in Google Scholar
377. Ryan, K. The fault in our stars: challenging the FCC’s treatment of commercial satellites as categorically excluded from review under the national environmental policy act; 2020. Available from: www.jetlaw.org/wp-content/uploads/2020/05/22.4-Ryan.pdf. Search in Google Scholar
378. U.S. Code of Federal Regulations, Federal Register. § 1.1306 actions which are categorically excluded from environmental processing, updated 8/19/2020; 2020. Available from: https://ecfr.federalregister.gov/current/title-47/chapter-I/subchapter-A/part-1/subpart-I/section-1.1306. Search in Google Scholar
379. Foust, J. Senators ask GAO to review FCC oversight of satellite constellations, Space News; 2020. Available from: https://spacenews.com/senators-ask-gao-to-review-fcc-oversight-of-satellite-constellations/. Search in Google Scholar